Assessment of the Accuracy of Spalart-Allmaras Turbulence Model for Application in Turbulent Wall Jets
ثبت نشده
چکیده
The Spalart and Allmaras turbulence model has been implemented in a numerical code to study the compressible turbulent flows, which the system of governing equations is solved with a finite volume approach using a structured grid. The AUSM scheme is used to calculate the inviscid fluxes. Different benchmark problems have been computed to validate the implementation and numerical results are shown. A special Attention is paid to wall jet applications. In this study, the jet is submitted to various wall boundary conditions (adiabatic or uniform heat flux) in forced convection regime and both two-dimensional and axisymmetric wall jets are considered. The comparison between the numerical results and experimental data has given the validity of this turbulence model to study the turbulent wall jets especially in engineering applications. Keywords—Wall Jet, Heat transfer, Numerical Simulation, Spalart-Allmaras Turbulence model.
منابع مشابه
Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملHigh-Order Discontinuous Galerkin Methods for Turbulent High-lift Flows
In this work a robust discontinuous Galerkin (DG) solver for turbulent high-lift aerodynamic flows using the turbulence model of Spalart and Allmaras (SA) is developed. The application of DG discretizations to turbulent RANS flows is one of the most pressing issues facing high-order methods on unstructured grids. The issue is the result of non-smooth behavior of the turbulence model equation, w...
متن کاملNo CFD / MECHA - 24 - 2012 DATE : November 15 , 2012 TITLE Exploring k and ǫ with Modified Spalart – Allmaras One – Equation Model
A wall–distance–free version of the Spalart–Allmaras (SA) one–equation model is proposed to account for the distinct effects of low-Reynolds number (LRN) and wall proximity. The turbulent kinetic energy k and the dissipation rate ǫ are evaluated using the ν̃t–transport equation together with some empirical relations. The model coefficients/functions preserve the anisotropic characteristics of tu...
متن کاملFlow Field Characteristics of an Aerospike Nozzle Using Different Turbulence Models
To improve the calculation of the flow properties of an aerospike nozzle, different turbulence models were investigated in this study. The primary shape of the nozzle plug is determined through utilizing an approximate method. The flow field is, then, simulated using the Navier-Stokes equations for compressible flows. The commercial computational fluid dynamics code Fluent is used to simulate t...
متن کاملModeling the Effect of Shock Unsteadiness in Shock/ Turbulent Boundary-Layer Interactions
Reynolds-averaged Navier–Stokes (RANS) methods often cannot predict shock/turbulence interaction correctly. This may be because RANS models do not account for the unsteady motion of the shock wave that is inherent in these interactions. Previous work proposed a shock-unsteadiness correction that significantly improves prediction of turbulent kinetic energy amplification across a normal shock in...
متن کامل